PROBLEM

Prove that
$$\cos \tan^{-1} \sin \cot^{-1} x = \sqrt{\frac{x^2 + 1}{x^2 + 2}}$$
. (2002 - 5 Marks)

SOLUTION

To prove that $\cos \tan^{-1} \sin \cot^{-1} x =$

L.H.S. =
$$\cos [\tan^{-1} (\sin (\cot^{-1} x))]$$

= cos [tan⁻¹ (sin (sin⁻¹
$$\frac{1}{\sqrt{1+x^2}}$$
))] if $x > 0$

and cos
$$[\tan^{-1} (\sin (\pi - \sin^{-1} \frac{1}{\sqrt{1 + x^2}}))]$$
 if $x < 0$

In each case,

$$= \cos \left[\tan^{-1} \frac{1}{\sqrt{1+x^2}} \right] = \cos \left[\cos^{-1} \frac{1}{\sqrt{1+x^2}} \right]$$

Hence Proved.